Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bone Joint Surg Am ; 95(23): e1831-7, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24306706

RESUMO

BACKGROUND: Children with lower-limb-length discrepancy require repeated radiographic assessment for monitoring and as a guide for management. The need for accurate assessment of length and alignment is balanced by the need to minimize radiation exposure. We compared the accuracy, reliability, and radiation dose of EOS, a novel low-dose upright biplanar radiographic imaging system, at two different settings, with that of conventional radiographs (teleoroentgenograms) and computed tomography (CT) scanograms, for the assessment of limb length. METHODS: A phantom limb in a standardized position was assessed ten times with each of four different imaging modalities (conventional radiographs, CT scanograms, EOS-Slow, EOS-Fast). A radiation dosimeter was placed on the phantom limb, on a portion closest to the radiation source for each modality, in order to measure skin-entrance radiation dose. Standardized measurements of bone lengths were made on each image by consultant orthopaedic surgeons and residents and then were assessed for accuracy and reliability. RESULTS: The mean absolute difference from the true length of the femur was significantly lower (most accurate) for the EOS-Slow (2.6 mm; 0.5%) and EOS-Fast (3.6 mm; 0.8%) protocols as compared with CT scanograms (6.3 mm; 1.3%) (p < 0.0001), and conventional radiographs (42.2 mm; 8.8%) (p < 0.0001). There was no significant difference in accuracy between the EOS-Slow and EOS-Fast protocols (p = 0.48). The mean radiation dose was significantly lower for the EOS-Fast protocol (0.68 mrad; 95% confidence interval [CI], 0.60 to 0.75 mrad) compared with the EOS-Slow protocol (13.52 mrad; 95% CI, 13.45 to 13.60 mrad) (p < 0.0001), CT scanograms (3.74 mrad; 95% CI, 3.67 to 3.82 mrad) (p < 0.0001), and conventional radiographs (29.01 mrad; 95% CI, 28.94 to 29.09 mrad) (p < 0.0001). Intraclass correlation coefficients showed excellent (>0.90) agreement for conventional radiographs, the EOS-Slow protocol, and the EOS-Fast protocol. CONCLUSIONS: Upright EOS protocols that utilize a faster speed and lower current are more accurate than CT scanograms and conventional radiographs for the assessment of length and also are associated with a significantly lower radiation exposure. In addition, the ability of this technology to obtain images while subjects are standing upright makes this the ideal modality with which to assess limb alignment in the weight-bearing position. This method has the potential to become the new standard for repeated assessment of lower-limb lengths and alignment in growing children. CLINICAL RELEVANCE: This study assesses the reliability and accuracy of a diagnostic test used for clinical decision-making.


Assuntos
Fêmur/diagnóstico por imagem , Desigualdade de Membros Inferiores/diagnóstico por imagem , Fêmur/patologia , Humanos , Desigualdade de Membros Inferiores/patologia , Extremidade Inferior/diagnóstico por imagem , Variações Dependentes do Observador , Imagens de Fantasmas , Doses de Radiação , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X
2.
J Acoust Soc Am ; 116(6): 3294-303, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15658681

RESUMO

This paper addresses the problem of small-signal transient wave propagation in media whose absorption coefficient obeys power-law frequency dependence, i.e., alpha infinity omega n. Our approach makes use of previously derived relations between the absorption and dispersion based on the Kramers-Kronig relations. This, combined with a recently obtained solution to a causal convolution wave equation enable expressions to be obtained for one-dimensional transient propagation when n is in the range 0 < n < 3. For n = 2, corresponding to no dispersion, straightforward analytical expressions are obtained for a delta-function and a sinusoidal step function sources and these are shown to correspond to relations previously derived. For other values of n, the effects of dispersion are accounted for by using Fourier transforms. Examples are used to illustrate the results for normal and anomalous dispersive media and to examine the question as to the conditions under which the effects of dispersion should be accounted for, especially for wideband ultrasound pulses of the type used in B-mode tissue imaging. It is shown that the product of the attenuation and total propagation path can be used as a criterion for judging whether dispersion needs to be accounted for.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...